

OTC Modeling Committee Update OTC Annual Meeting June 2, 2022

Accomplishments & Ongoing Work

- Tracking OTR ozone levels and the preliminary attainment status
- Modeling:
 - Completed V1 2016 and 2023 Modeling with CMAQ and CAMx
 - Starting updating to the new V2 emission inventories and performing new base case modeling for 2016, 2023 and 2026
 - Performed sensitivity modeling on the OTC 4km modeling subdomain
 - Nearing Completion 2018/19 Episodic screening modeling for High Energy Demand Days (HEDD)
- Nearing completion of the draft Modeling Technical Support Document (TSD)
- Following the evolving science of regional research efforts

2008 and 2015 Ozone NAAQS Timelines

Ozone Timeline	2008 NAAQS	2015 NAAQS	Proposed
Marginal Nonattainment Area		August 2021	<u>Bump-ups</u>
Attainment Date		(2018-20 data)	
Moderate Nonattainment Area Attainment Date		August 2024 (2021-23 data)	Greater CT, Philly, Baltimore, & DC Nonattainment Areas
Serious Nonattainment Area Attainment Date	July 2021 (2018-20 data)	August 2027 (2024-26 data)	
Severe Nonattainment Area Attainment Date	July 2027 (2024-26 data)	August 2033	NY
Extreme Nonattainment Area Attainment Data	July 2032	August 2038	Nonattainment Area

OZONE MONITORING AND NONATTAINMENT

2019-2021 Design Values

How Many People are Exposed to High Ozone?

Current Air Quality Summary

- Some improvement in recent years but progress has flattened out over since 2013
- 2. There are 13 ozone monitors in the OTR that are failing to meet the 2015 ozone NAAQS and 4 that are failing to meet the 2008 NAAQS
- 3. All OTR ozone nonattainment areas are being bumped up in classification
- 4. About 12 million people living in the OTR are still breathing air that fails to meet ozone health standards

OTC MODELING FOR 2023

- 1. V1 2023 BASE CASE
- 2. HEDD EPISODIC SENSITIVITY MODELING
- 3. TAGGED EMISSION CONTRIBUTION MODELING

OTC 2023 Projected Design Values (V1) - CMAQ

2023 Predicted Design Values - OTC V1 vs EPA V2

6/2/2022 10

HEDD Episodic Modeling

- 1. High Energy Demand Day (HEDD) electric generating units are units that are infrequently operated, and often high emitting, sources extra electricity during periods of high demand
- 2. The Modeling Committee developed innovative techniques for using real (actual 2018/19), rather than model predicted, HEDD EGU emissions
- 3. Sensitivity modeling indicates that there are existing cleaner options for dispatching cleaner generating HEDD units

HEDD Episodic Modeling Total Part-75 Electric Generation NOx Emissions per scenario

- Large decrease between 2016 Run 1 and 2018/19 Run 2
- In sensitivity modeling cases, worst case HEDD
 EGU emissions are about
 30% higher, and best
 case emissions are
 about 50% lower, than
 the 2018/19 Run 2

HEDD Episodic Modeling Examples: Model Predicted Changes in 8-Hour Ozone

(Re)Base 2018/19 Modeled Ozone

Modeled Ozone Change 2018/19 Difference from 2016 Modeled Ozone Change

2018/19 All Part-75 HEDD EGUs Off

July Monthly Average Concentration Differences

HEDD Episodic Modeled Change in 8-Hour Ozone Examples: 2018/19 Electric Load Maintained

July Monthly Average Concentration Differences

6/2/2022 14

Contribution Modeling

<u>Contributing</u> <u>State</u> <u>Variability</u>

Variability Day-to-Day Hour-to-Hour

Beltsville, MD 4 High Ozone Days

Contributions are highly variable

2023 Modeling Summary

- 1. OTC modeling projects 4 to 5 monitors will fail to meet the 2015 ozone NAAQS and 1 will fail to meet the 2008 NAAQS in 2023
 - A. EPA V2 modeling projects a slightly lower ozone at high ozone monitors in the OTR
 - B. OTC 4km modeling and No-Water calculations show potential to improve predicted design values at several high ozone locations in the OTR
- 2. OTC episodic modeling indicates that HEDD EGUs:
 - A. Can produce important contributions to ozone exceedance in the region
 - B. There may be cleaner options for peak period generation
- 3. OTC contribution modeling indicates that:
 - A. Contributing states to the OTR are highly variable and dependent on wind flows
 - B. States as far away as Texas contribute more than 1% of the NAAQS to ozone exceedances in the OTR on some days
 - C. OnRoad, Area, NonRoad, and EGUs are the top contributing emission sectors in the OTR (account for about 70% of NOx emissions) 6/2/2022 16

Moving Forward

- The Modeling Committee will continue to track ozone levels and attainment status across the region
- New modeling may include:
 - Update to V2 emissions with projections to 2023 and 2026
 - Episodic sensitivity modeling for urban VOCs, MWCs, wood-fired ICI units and other scenarios identified by the other committees and Air Directors

Contact Information

- Committee Chair:
- Modeling Lead:

Jeff Underhill (NH) (603) 271-1102 jeffrey.underhill@des.nh.gov

Margaret LaFarr (NY) (518) 402-8402 margaret.lafarr@dec.ny.gov

Kevin Civerolo (NY)

kevin.civerolo@dec.ny.gov

(518) 402-8383

• Emissions Inventory Lead: Susan McCusker (MARAMA) (443) 322-0317

<u>smccusker@marama.org</u>

• OTC Committee Lead: Alex Karambelas (OTC/NESCAUM) <u>AKarambelas@nescaum.org</u> (224) 805-1100

2021 Ozone Season - Preliminary

9 different monitors in

Draft – OTC Modeling Committee Preliminary

9 days exceeding 84ppb

4 states exceeded 84 ppb

2019-2021 Ozone Attainment Status - Preliminary

	# Monitors	Spe	cific to Highest Ozon	e Monito	r in Area						
Nonattainment	Exceeding	High Co	oncentration Monitor		Preliminary			# Days			
Area	in NAA	Agency	Site Name	AQS Code	2019-21 DV	NAAQS	Мах	Max 2nd High	Max 3rd High	Max 4th High	>NAAQS
Greater CT	1	СТ	Groton Fort Griswold	90110124	73	70	82	76	76	75	9
NYC	4	СТ	Madison-combined (9002 3002	90099002	82	75	99	89	87	86	25
Philadelphia	2	PA	Bristol	420170012	71	70	86	80	77	77	14
Baltimore	1	MD	Edgew ood	240251001	72	70	82	78	78	75	15
Washington	0	MD	Beltsville	240339991	70	70	82	77	74	72	8

All Violating	Monitors		Preliminary		2021	2021			
AQS Code	Agency	Site Name	2019-21 pDV	NAAQS	Мах	Max 2nd High		4th High	>NAAQS
90010017	СТ	Greenw ich	79	75	94	82	78	78	8
90013007	CT	Stratford	81	75	91	87	87	86	8
90019003	СТ	Westport	80	75	99	89	87	86	10
90099002	CT	Madison-combined (9002	82	75	89	85	84	83	10
90110124	CT	Groton Fort Grisw old	73	70	79	76	76	75	6
240251001	MD	Edgew ood	72	70	74	73	73	73	6
420170012	PA	Bristol	71	70	83	80	77	77	10
421010024	PA	NEA	71	70	86	78	74	72	7

EPA 2015 Ozone NAAQS Good Neighbor Modeling

				CMAQ 12 km					CAMX	12 km		CAMx 4 km				EPA CAMx 12 km				
				3	x3	3x3 no water 1		3x3 3x3		3x3 no	3x3 no water 1		3x3		3x3 no water 1		3x3		3x3 no water 1	
			2019-2021	DVFavg.p	DVFmax.	DVFavg.p	DVFmax.	DVFavg.p	DVFmax.	DVFavg.p	DVFmax.	DVFavg.p	DVFmax.	DVFavg.p	DVFmax.	DVFavg.p	DVFmax.	DVFavg.p	DVFmax.	
			pDV	re-trunc	pre-trunc	re-trunc	pre-trunc	re-trunc	pre-trunc	re-trunc	pre-trunc	re-trunc	pre-trunc	re-trunc	pre-trunc	re-trunc	pre-trunc	re-trunc	pre-trunc	
Site ID	State	Site name		AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	
90019003	СТ	Westport	80	80.6	80.9	75.5	75.8	78.3	78.6	76	76.2	77.9	78.2	77.8	78	76.8	77	76.1	76.4	
90013007	СТ	Stratford	81	74.6	75.5	75.1	76	75.8	76.7	75	75.9	77.1	78.1	77.1	78.1	74.7	75.6	74.2	75.1	
90010017	СТ	Greenwich	79	71.7	72.4	78.8	79.5	74.1	74.7	74.6	75.2	75.2	75.8	75.5	76.2	75.3	75.9	73	73.7	
90099002	СТ	Madison-combined (90	82	71.8	73.9	70.8	72.8	71.6	73.7	72.3	74.4	73.7	75.8	73.6	75.8	72.1	74.2	71.8	73.9	
420170012	PA	Bristol	71	69.1	70.6	69.1	70.6	71.1	72.6	71.1	72.6	72.4	73.9	72.4	73.9	70.7	72.2	70.7	72.2	
360850067	NY	NYC-Susan Wagner HS		74.2	74.2	70.3	70.3	71.3	71.3	70.5	70.5	69.9	69.9	69.7	69.7	69.9	69.9	69.5	69.5	
90079007	СТ	Middletown-combined	74	68.9	69.2	68.9	69.2	70.2	70.5	70.2	70.5	70.9	71.2	70.9	71.2	69.8	70.1	69.8	70.1	
421010024	PA	NEA	71	68.2	68.4	68.2	68.4	69.5	69.8	69.5	69.8	70.9	71.1	70.9	71.1	69.5	69.8	69.5	69.8	
90090027	СТ	New Haven-B	72	69.3	70.5	68.4	69.6	69.5	70.7	68.7	69.9	70.6	71.8	69.7	70.9	68.2	69.4	68	69.1	
90011123	СТ	Danbury	70	68.8	69.7	68.8	69.7	69.3	70.2	69.3	70.2	69.7	70.6	69.7	70.6	68.6	69.5	68.6	69.5	
361030002	NY	Babylon	73	68.3	70.1	67.6	69.4	69.7	71.6	68.3	70.1	69.2	71.1	69.2	71.1	69	70.9	67.6	69.4	
340030006	NJ	Leonia	71	68.1	68.7	68.1	68.7	69.2	69.9	69.2	69.9	68.4	69	68.4	69	68.5	69.2	68.5	69.2	
90110124	СТ	Groton Fort Griswold	73	67.9	69.5	71.3	72.9	67	68.5	68	69.6	67.5	69.1	67.6	69.2	67	68.5	67.5	69.1	
361192004	NY	White Plains	69	66.9	67.8	67.9	68.8	70.1	71.1	67.9	68.8	68.4	69.3	68.4	69.3	69.6	70.6	67	67.9	
360810124	NY	NYC-Queens	71	66.5	68.1	65.7	67.2	67.9	69.5	68.1	69.7	68.9	70.5	68.9	70.5	67.8	69.4	67.5	69.1	
340070002	NJ	Camden-Spruce St	66	66.2	67.6	66.2	67.6	67.6	69.1	67.6	69.1	69.2	70.8	69.2	70.8	67.4	68.9	67.4	68.9	
361030004	NY	Riverhead	69	66.4	67.9	66.8	68.4	68.3	69.8	67.3	68.8	67.7	69.2	67.7	69.3	67.9	69.5	66.8	68.3	
421010048	PA	NEW		66.3	66.9	66.3	66.9	67.4	68	67.4	68	69.2	69.9	69.2	69.9	67.2	67.8	67.2	67.8	
360610135	NY	NYC-CCNY	70	64.7	66.2	64.9	66.5	66.3	67.9	65.9	67.5	66.1	67.7	66.1	67.7	66.9	68.6	65.9	67.5	
360050133	NY	NYBG-Bronx-combined	70	64	65.2	65.5	66.7	67.2	68.5	66.5	67.7	65.5	66.7	65.5	66.7	67.2	68.5	65.7	66.9	
340230011	NJ	Rutgers U	68	65.7	66	65.7	66	66.7	66.9	66.7	66.9	66.9	67.1	66.9	67.1	66.2	66.4	66.2	66.4	
361030009	NY	Suffolk County-combin	70	66.9	68.7	64.2	66	66.2	68.1	64.6	66.5	65.1	66.9	65.1	66.9	65.2	67	64.5	66.3	
340150002	NJ	Clarksboro		65.8	66	65.8	66	66.1	66.4	66.1	66.4	66.6	66.9	66.6	66.9	65.3	65.6	65.3	65.6	
340170006	NJ	Bayonne	66	68.2	69.1	64.8	65.7	66	66.9	65.1	66	65.7	66.7	65.7	66.7	64.5	65.4	64.5	65.4	
250051004	MA	Fall River		68.5	70.7	63.3	65.3	64.5	66.6	64.4	66.5					64.2	66.3	64	66	
340219991	NJ	Wash Crossing	66	64.8	65.4	64.8	65.4	65.8	66.4	65.8	66.4	65.8	66.5	65.8	66.5	65.2	65.8	65.2	65.8	